Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Lancet ; 403(10426): 533-544, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38310910

RESUMO

BACKGROUND: Recently, we found that a new malaria vaccine, R21/Matrix-M, had over 75% efficacy against clinical malaria with seasonal administration in a phase 2b trial in Burkina Faso. Here, we report on safety and efficacy of the vaccine in a phase 3 trial enrolling over 4800 children across four countries followed for up to 18 months at seasonal sites and 12 months at standard sites. METHODS: We did a double-blind, randomised, phase 3 trial of the R21/Matrix-M malaria vaccine across five sites in four African countries with differing malaria transmission intensities and seasonality. Children (aged 5-36 months) were enrolled and randomly assigned (2:1) to receive 5 µg R21 plus 50 µg Matrix-M or a control vaccine (licensed rabies vaccine [Abhayrab]). Participants, their families, investigators, laboratory teams, and the local study team were masked to treatment. Vaccines were administered as three doses, 4 weeks apart, with a booster administered 12 months after the third dose. Half of the children were recruited at two sites with seasonal malaria transmission and the remainder at standard sites with perennial malaria transmission using age-based immunisation. The primary objective was protective efficacy of R21/Matrix-M from 14 days after third vaccination to 12 months after completion of the primary series at seasonal and standard sites separately as co-primary endpoints. Vaccine efficacy against multiple malaria episodes and severe malaria, as well as safety and immunogenicity, were also assessed. This trial is registered on ClinicalTrials.gov, NCT04704830, and is ongoing. FINDINGS: From April 26, 2021, to Jan 12, 2022, 5477 children consented to be screened, of whom 1705 were randomly assigned to control vaccine and 3434 to R21/Matrix-M; 4878 participants received the first dose of vaccine. 3103 participants in the R21/Matrix-M group and 1541 participants in the control group were included in the modified per-protocol analysis (2412 [51·9%] male and 2232 [48·1%] female). R21/Matrix-M vaccine was well tolerated, with injection site pain (301 [18·6%] of 1615 participants) and fever (754 [46·7%] of 1615 participants) as the most frequent adverse events. Number of adverse events of special interest and serious adverse events did not significantly differ between the vaccine groups. There were no treatment-related deaths. 12-month vaccine efficacy was 75% (95% CI 71-79; p<0·0001) at the seasonal sites and 68% (61-74; p<0·0001) at the standard sites for time to first clinical malaria episode. Similarly, vaccine efficacy against multiple clinical malaria episodes was 75% (71-78; p<0·0001) at the seasonal sites and 67% (59-73; p<0·0001) at standard sites. A modest reduction in vaccine efficacy was observed over the first 12 months of follow-up, of similar size at seasonal and standard sites. A rate reduction of 868 (95% CI 762-974) cases per 1000 children-years at seasonal sites and 296 (231-362) at standard sites occurred over 12 months. Vaccine-induced antibodies against the conserved central Asn-Ala-Asn-Pro (NANP) repeat sequence of circumsporozoite protein correlated with vaccine efficacy. Higher NANP-specific antibody titres were observed in the 5-17 month age group compared with 18-36 month age group, and the younger age group had the highest 12-month vaccine efficacy on time to first clinical malaria episode at seasonal (79% [95% CI 73-84]; p<0·001) and standard (75% [65-83]; p<0·001) sites. INTERPRETATION: R21/Matrix-M was well tolerated and offered high efficacy against clinical malaria in African children. This low-cost, high-efficacy vaccine is already licensed by several African countries, and recently received a WHO policy recommendation and prequalification, offering large-scale supply to help reduce the great burden of malaria in sub-Saharan Africa. FUNDING: The Serum Institute of India, the Wellcome Trust, the UK National Institute for Health Research Oxford Biomedical Research Centre, and Open Philanthropy.


Assuntos
Vacinas Antimaláricas , Malária , Nanopartículas , Saponinas , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Anticorpos Antivirais , Burkina Faso , Método Duplo-Cego , Imunização , Malária/tratamento farmacológico , Vacinas Antimaláricas/efeitos adversos
2.
Infect Immun ; 91(10): e0026823, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37754682

RESUMO

In this study, we investigated how different categories of prenatal malaria exposure (PME) influence levels of maternal antibodies in cord blood samples and the subsequent risk of malaria in early childhood in a birth cohort study (N = 661) nested within the COSMIC clinical trial (NCT01941264) in Burkina Faso. Plasmodium falciparum infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. The levels of maternal IgG and IgG1-4 to 15 P. falciparum antigens were measured in cord blood by quantitative suspension array technology. Results showed a significant variation in the magnitude of maternal antibody levels in cord blood, depending on the PME category, with past placental malaria (PM) more frequently associated with significant increases of IgG and/or subclass levels across three groups of antigens defined as pre-erythrocytic, erythrocytic, and markers of PM, as compared to those from the cord of non-exposed control infants. High levels of antibodies to certain erythrocytic antigens (i.e., IgG to EBA140 and EBA175, IgG1 to EBA175 and MSP142, and IgG3 to EBA140 and MSP5) were independent predictors of protection from clinical malaria during the first year of life. By contrast, high levels of IgG, IgG1, and IgG2 to the VAR2CSA DBL1-2 and IgG4 to DBL3-4 were significantly associated with an increased risk of clinical malaria. These findings indicate that PME categories have different effects on the levels of maternal-derived antibodies to malaria antigens in children at birth, and this might drive heterogeneity to clinical malaria susceptibility in early childhood.


Assuntos
Malária Falciparum , Malária , Criança , Lactente , Recém-Nascido , Humanos , Pré-Escolar , Feminino , Gravidez , Plasmodium falciparum , Estudos de Coortes , Burkina Faso/epidemiologia , Exposição Materna , Placenta , Anticorpos Antiprotozoários , Malária/epidemiologia , Imunoglobulina G , Antígenos de Protozoários
4.
J Parasit Dis ; 47(2): 280-289, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37193494

RESUMO

In this study, we evaluated the performance of a P. falciparum Histidine Rich Protein 2 (PfHRP2)-based rapid diagnostic test (RDT) used for malaria case detection (SD-Bioline malaria RDT P.f®) along with light microscopy (LM) against qPCR among children during the first year of life in a high and seasonal malaria transmission area in Burkina Faso. A total of 723 suspected malaria cases (including multiple episodes) that occurred among 414 children participating in a birth-cohort study were included in the present analysis. Factors including age at the time of malaria screening, transmission season and parasite densities were investigated for their potential influence in the performance of the RDT. Clinical malaria cases as detected by RDT, LM and qPCR were 63.8%, 41.5% and 49.8%, respectively. Compared with qPCR, RDT had a false-positive results rate of 26.7%, resulting in an overall accuracy of 79.9% with a sensitivity of 93%, a specificity of 66.1%, a Positive Predictive Value of 73.3% and a Negative Predictive Value of 91.6%. Its specificity differed significantly between high and low transmission seasons (53.7% vs 79.8%; P < 0.001) and decreased with increasing age (80.6-62%; P for trend = 0.024). The overall accuracy of LM was 91.1% and its performance was not significantly influenced by transmission season or age. These findings highlight the need to adapt malaria diagnostic tools recommendations to face the challenge of adequate malaria detection in this population group living in high burden and seasonal malaria transmission settings.

5.
Lancet Infect Dis ; 22(12): 1728-1736, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36087586

RESUMO

BACKGROUND: Malaria is a leading cause of morbidity and mortality worldwide. We previously reported the efficacy of the R21/Matrix-M malaria vaccine, which reached the WHO-specified goal of 75% or greater efficacy over 12 months in the target population of African children. Here, we report the safety, immunogenicity, and efficacy results at 12 months following administration of a booster vaccination. METHODS: This double-blind phase 1/2b randomised controlled trial was done in children aged 5-17 months in Nanoro, Burkina Faso. Eligible children were enrolled and randomly assigned (1:1:1) to receive three vaccinations of either 5 µg R21/25 µg Matrix-M, 5 µg R21/50 µg Matrix-M, or a control vaccine (the Rabivax-S rabies vaccine) before the malaria season, with a booster dose 12 months later. Children were eligible for inclusion if written informed consent could be provided by a parent or guardian. Exclusion criteria included any existing clinically significant comorbidity or receipt of other investigational products. A random allocation list was generated by an independent statistician by use of block randomisation with variable block sizes. A research assistant from the University of Oxford, independent of the trial team, prepared sealed envelopes using this list, which was then provided to the study pharmacists to assign participants. All vaccines were prepared by the study pharmacists by use of the same type of syringe, and the contents were covered with an opaque label. Vaccine safety, efficacy, and a potential correlate of efficacy with immunogenicity, measured as anti-NANP antibody titres, were evaluated over 1 year following the first booster vaccination. The population in which the efficacy analyses were done comprised all participants who received the primary series of vaccinations and a booster vaccination. Participants were excluded from the efficacy analysis if they withdrew from the trial within the first 2 weeks of receiving the booster vaccine. This trial is registered with ClinicalTrials.gov (NCT03896724), and is continuing for a further 2 years to assess both the potential value of additional booster vaccine doses and longer-term safety. FINDINGS: Between June 2, and July 2, 2020, 409 children returned to receive a booster vaccine. Each child received the same vaccination for the booster as they received in the primary series of vaccinations; 132 participants received 5 µg R21 adjuvanted with 25 µg Matrix-M, 137 received 5 µg R21 adjuvanted with 50 µg Matrix-M, and 140 received the control vaccine. R21/Matrix-M had a favourable safety profile and was well tolerated. Vaccine efficacy remained high in the high adjuvant dose (50 µg) group, similar to previous findings at 1 year after the primary series of vaccinations. Following the booster vaccination, 67 (51%) of 132 children who received R21/Matrix-M with low-dose adjuvant, 54 (39%) of 137 children who received R21/Matrix-M with high-dose adjuvant, and 121 (86%) of 140 children who received the rabies vaccine developed clinical malaria by 12 months. Vaccine efficacy was 71% (95% CI 60 to 78) in the low-dose adjuvant group and 80% (72 to 85) in the high-dose adjuvant group. In the high-dose adjuvant group, vaccine efficacy against multiple episodes of malaria was 78% (95% CI 71 to 83), and 2285 (95% CI 1911 to 2568) cases of malaria were averted per 1000 child-years at risk among vaccinated children in the second year of follow-up. Among these participants, at 28 days following their last R21/Matrix-M vaccination, titres of malaria-specific anti-NANP antibodies correlated positively with protection against malaria in both the first year of follow-up (Spearman's ρ -0·32 [95% CI -0·45 to -0·19]; p=0·0001) and second year of follow-up (-0·20 [-0·34 to -0·06]; p=0·02). INTERPRETATION: A booster dose of R21/Matrix-M at 1 year following the primary three-dose regimen maintained high efficacy against first and multiple episodes of clinical malaria. Furthermore, the booster vaccine induced antibody concentrations that correlated with vaccine efficacy. The trial is ongoing to assess long-term follow-up of these participants and the value of further booster vaccinations. FUNDING: European and Developing Countries Clinical Trials Partnership 2 (EDCTP2), Wellcome Trust, and NIHR Oxford Biomedical Research Centre. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Malária , Vacina Antirrábica , Humanos , Burkina Faso , Seguimentos , Método Duplo-Cego , Adjuvantes Imunológicos , Imunogenicidade da Vacina
6.
Pan Afr Med J ; 38: 259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104307

RESUMO

INTRODUCTION: acute diarrhea in children under five years is a public health problem in developing countries and particularly in malaria-endemic areas where both diseases co-exist. The present study examined the etiology of childhood diarrhea and its comorbidity with malaria in a rural area of Burkina Faso. METHODS: conventional culture techniques, direct stools examination, and viruses´ detection by rapid tests were performed on the fresh stools and microscopy was used to diagnose malaria. Some risk factors were also assessed. RESULTS: on a total of 191 samples collected, at least one pathogen was identified in 89 cases (46.6%). The proportions of pathogens found on the 89 positive stool samples were parasites 51.69% (46 cases), viruses 39.33% (35 cases), and bacteria 14.61% (13 cases), respectively. The relationship between malaria and infectious diarrhea was significant in viral and parasites causes (p=0.005 and 0.043 respectively). Fever, vomiting and abdominal pain were the major symptoms associated with diarrhea, with 71.51%, 31.72% and 23.66% respectively. The highest viral diarrhea prevalence was reported during the dry season (OR=5.29, 95% CI: 1.74 - 16.07, p=0.001) while parasite diarrhea was more encountered during the rainy season (OR=0.41, 95% CI: 0.33 - 0.87, p=0.011). CONCLUSION: Giardia spp and rotavirus were the leading cause of acute diarrhea in Nanoro, Burkina Faso with a predominance of rotavirus in children less than 2 years. Parasite and viral diarrhea were the most pathogens associated with malaria. However, the high rate of negative stool samples suggests the need to determine other enteric microorganisms.


Assuntos
Diarreia/epidemiologia , Malária/epidemiologia , População Rural , Dor Abdominal/epidemiologia , Doença Aguda , Burkina Faso/epidemiologia , Pré-Escolar , Comorbidade , Diarreia/microbiologia , Feminino , Febre/epidemiologia , Giardíase/epidemiologia , Humanos , Lactente , Masculino , Prevalência , Fatores de Risco , Infecções por Rotavirus/epidemiologia , Estações do Ano , Vômito/epidemiologia
7.
Malar J ; 19(1): 399, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172485

RESUMO

BACKGROUND: Single nucleotide polymorphisms occurring in the Plasmodium falciparum multidrug resistant gene 1 (pfmdr1) are known to be associated with aminoquinoline resistance and, therefore, represent key P. falciparum markers for monitoring resistance both in susceptible groups (children under 5 years old and pregnant women) and in the general population. This study aimed to determine prevalence and factors associated with the carriage of pfmdr1 N86Y, Y184F and D1246Y polymorphisms among pregnant women in a setting of high malaria transmission in Burkina Faso. METHODS: Plasmodium falciparum isolates were collected at the first antenatal care visit (ANC-1) as well as at delivery from pregnant women participating in the COSMIC trial (NTC01941264), which assessed malaria preventive interventions during pregnancy in the Nanoro Health District. Here, pregnant women received intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) and malaria infections and/or diseases were treated using artemether-lumefantrine (AL) during the trial. Parasite DNA was extracted from dried blood spots and the presence of pfmdr1 mutations at positions 86, 184 and 1246 was determined using nested PCR, followed by restriction fragment length polymorphism (RFLP) analysis. RESULTS: A prevalence of 13.2% (20/151) and 12.1% (14/116) of the pfmdr1 86Y mutant allele was found at ANC-1 and at delivery, respectively, while no mutant allele was observed for Y184F and D1246Y codons at both ANC-1 and at delivery. There were no significant factors associated with pfmdr1 86Y mutant allele carriage at ANC-1. However, malaria infections at delivery with a parasite density above the median (2237.2 (IQR: 613.5-11,425.7) parasites/µl) was associated with an increase risk of pfmdr1 86Y mutant allele carriage (AOR = 5.5 (95% CI 1.07-28.0); P = 0.04). In contrast, both three or more IPTp-SP doses (AOR = 0.25 (95% CI 0.07-0.92); P = 0.04) and one or more AL treatment (AOR = 0.25 (95% CI 0.07-0.89); P = 0.03) during pregnancy were associated with a significant reduce risk of pfmdr1 86Y mutant allele carriage at delivery. CONCLUSION: These findings suggest that both high coverage of IPTp-SP and the use of AL for the treatment of malaria infection/disease during pregnancy select for pfmdr1 N86 wild-type allele at delivery.


Assuntos
Combinação Arteméter e Lumefantrina/uso terapêutico , Portador Sadio/parasitologia , Malária Falciparum/epidemiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/fisiologia , Polimorfismo Genético , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Adolescente , Adulto , Burkina Faso/epidemiologia , Combinação de Medicamentos , Feminino , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Gravidez , Prevalência , Fatores de Risco , Adulto Jovem
8.
BMC Public Health ; 20(1): 149, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005220

RESUMO

BACKGROUND: The global poverty profile shows that Africa and Asia bear the highest burden of multidimensional child poverty. Child survival and development therefore depend on socioeconomic and environmental factors that surround a child.The aim of this paper is to measure multidimensional child poverty and underpin what drives it among children aged 5 to 18 years in a resource poor region of Burkina Faso. METHODS: Using primary data collected from a cross sectional study of 722 households in the Mouhoun region of Burkina Faso, the Alkire-Foster methodology was applied to estimate and decompose child poverty among children aged 5-18 years. Seven broad dimensions guided by the child poverty literature, data availability and the country's SDGs were used. A binary logistic regression model was applied to identify drivers of multidimensional child poverty in the region. RESULTS: The highest prevalence of deprivations were recorded in water and sanitation (91%), information and leisure (89%) followed by education (83%). Interestingly, at k = 3 (the sum of weighted indicators that a child must be deprived to be considered multidimensionally poor), about 97% of children are deprived in at least three of the seven dimensions. At k = 4 to k = 6, between 88.7 and 30.9% of children were equally classified as suffering from multidimensional poverty. The odds of multidimensional poverty were reduced in children who belonged to households with a formally educated mother (OR = 0.49) or stable sources of income (OR = 0.31, OR = 0.33). The results equally revealed that being an adolescent (OR = 0.67), residing in the urban area of Boromo (OR = 0.13) and rural area of Safané (OR = 0.61) reduced the odds of child poverty. On the other hand, child poverty was highest among children from the rural area of Yé (OR = 2.74), polygamous households (OR = 1.47, OR = 5.57 and OR = 1.96), households with an adult head suffering from a longstanding illness (OR = 1.61), households with debts (OR = 1.01) and households with above five number of children/woman (OR = 1.49). CONCLUSION: Child poverty is best determined by using a multidimensional approach that involves an interplay of indicators and dimensions, bearing in mind its causation.


Assuntos
Pobreza/estatística & dados numéricos , Adolescente , Burkina Faso , Criança , Pré-Escolar , Estudos Transversais , Características da Família , Feminino , Humanos , Masculino , Fatores de Risco
9.
BMC Med ; 16(1): 198, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30384846

RESUMO

BACKGROUND: Factors driving inter-individual differences in immune responses upon different types of prenatal malaria exposure (PME) and subsequent risk of malaria in infancy remain poorly understood. In this study, we examined the impact of four types of PME (i.e., maternal peripheral infection and placental acute, chronic, and past infections) on both spontaneous and toll-like receptors (TLRs)-mediated cytokine production in cord blood and how these innate immune responses modulate the risk of malaria during the first year of life. METHODS: We conducted a birth cohort study of 313 mother-child pairs nested within the COSMIC clinical trial (NCT01941264), which was assessing malaria preventive interventions during pregnancy in Burkina Faso. Malaria infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. Supernatant concentrations of 30 cytokines, chemokines, and growth factors induced by stimulation of cord blood with agonists of TLRs 3, 7/8, and 9 were measured by quantitative suspension array technology. Crude concentrations and ratios of TLR-mediated cytokine responses relative to background control were analyzed. RESULTS: Spontaneous production of innate immune biomarkers was significantly reduced in cord blood of infants exposed to malaria, with variation among PME groups, as compared to those from the non-exposed control group. However, following TLR7/8 stimulation, which showed higher induction of cytokines/chemokines/growth factors than TLRs 3 and 9, cord blood cells of infants with evidence of past placental malaria were hyper-responsive in comparison to those of infants not-exposed. In addition, certain biomarkers, which levels were significantly modified depending on the PME category, were independent predictors of either malaria risk (GM-CSF TLR7/8 crude) or protection (IL-12 TLR7/8 ratio and IP-10 TLR3 crude, IL-1RA TLR7/8 ratio) during the first year of life. CONCLUSIONS: These findings indicate that past placental malaria has a profound effect on fetal immune system and that the differential alterations of innate immune responses by PME categories might drive heterogeneity between individuals to clinical malaria susceptibility during the first year of life.


Assuntos
Imunidade Inata/imunologia , Malária Falciparum/diagnóstico , Receptores Toll-Like/imunologia , Adulto , Estudos de Coortes , Feminino , Humanos , Malária Falciparum/imunologia , Masculino , Gravidez , Estudos Prospectivos
10.
Malar J ; 17(1): 163, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650007

RESUMO

BACKGROUND: Infants are thought to be protected against malaria during the first months of life mainly due to passage of maternal antibodies. However, in high transmission settings, malaria in early infancy is not uncommon and susceptibility to the infections varies between individuals. This study aimed to determine malaria morbidity and infection during early childhood in rural Burkina Faso. METHODS: Malariometric indices were determined over 1-year follow-up in a birth cohort of 734 infants living in Nanoro health district. Clinical malaria episodes were determined by passive case detection at peripheral health centres while asymptomatic malaria infections were identified during  4 cross-sectional surveys at 3, 6, 9 and 12 months of age. Plasmodium falciparum infections were detected by rapid diagnostic test and/or light microscopy (LM) and quantitative PCR (qPCR). RESULTS: In total, 717 clinical episodes were diagnosed by qPCR over 8335.18 person-months at risk. The overall malaria incidence was 1.03 per child-year and increased from 0.27 per child-year at 0-3 months of age to 1.92 per child-year at 9-12 months of age. Some 59% of children experienced at least one clinical episode with a median survival time estimated at 9.9 months, while 20% of infants experienced the first episode before 6 months of age. The majority of the clinical episodes were attributable to microscopic parasitaemia (84.2%), and there was a positive correlation between parasite density and age (Spearman's rho = 0.30; P < 0.0001). Prevalence of asymptomatic infections was similar at 3, 6 and 9 months of age (17.7-20.1%) and nearly 1.6 times higher at 12 months (31.3%). Importantly, gametocyte prevalence among the LM-positive study population was 6.7%, but increased to 10% among asymptomatic infections. In addition, 46% of asymptomatic infections were only detected by qPCR suggesting that infants below 1 year are a potential reservoir for sustaining malaria transmission. Both symptomatic and asymptomatic infections showed marked seasonal distribution with the highest transmission period (July to December) accounting for about 89 and 77% of those infections, respectively. CONCLUSIONS: These findings indicate high and marked age and seasonal-dependency of malaria infections and disease during the first year of life in Nanoro, calling for intensified efforts to control malaria in rural Burkina Faso.


Assuntos
Infecções Assintomáticas/epidemiologia , Malária Falciparum/epidemiologia , Fatores Etários , Burkina Faso/epidemiologia , Estudos de Coortes , Estudos Transversais , Testes Diagnósticos de Rotina , Suscetibilidade a Doenças/epidemiologia , Suscetibilidade a Doenças/parasitologia , Humanos , Incidência , Lactente , Recém-Nascido , Estudos Longitudinais , Malária Falciparum/parasitologia , Microscopia , Morbidade , Reação em Cadeia da Polimerase , Prevalência
11.
J Infect Dis ; 217(12): 1967-1976, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29659897

RESUMO

Background: Although consensus exists that malaria in pregnancy (MiP) increases the risk of malaria in infancy, and eventually nonmalarial fevers (NMFs), there is a lack of conclusive evidence of benefits of MiP preventive strategies in infants. Methods: In Burkina Faso, a birth cohort study was nested to a clinical trial assessing the effectiveness of a community-based scheduled screening and treatment of malaria in combination with intermittent preventive treatment with sulfadoxine-pyrimethamine (CSST/IPTp-SP) to prevent placental malaria. Clinical episodes and asymptomatic infections were monitored over 1 year of follow-up to compare the effect of CSST/IPTp-SP and standard IPTp-SP on malaria and NMFs. Results: Infants born during low-transmission season from mothers receiving CSST/IPTp-SP had a 26% decreased risk of experiencing a first clinical episode (hazard ratio, 0.74 [95% confidence interval, .55-0.99]; P = .047). CSST/IPTp-SP interacted with birth season and gravidity to reduce the incidence of NMFs. No significant effects of CSST/IPTp-SP on the incidence of clinical episodes, parasite density, and Plasmodium falciparum infections were observed. Conclusions: Our findings indicate that CSST/IPTp-SP strategy may provide additional protection against both malaria and NMFs in infants during the first year of life, and suggest that malaria control interventions during pregnancy could have long-term benefits in infants.


Assuntos
Antimaláricos/uso terapêutico , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Adulto , Burkina Faso , Estudos de Coortes , Combinação de Medicamentos , Feminino , Humanos , Incidência , Lactente , Masculino , Programas de Rastreamento/métodos , Plasmodium falciparum/efeitos dos fármacos , Gravidez , Complicações Parasitárias na Gravidez/diagnóstico , Complicações Parasitárias na Gravidez/tratamento farmacológico , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico
12.
Sci Rep ; 7(1): 2080, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522856

RESUMO

Congenital malaria diagnosis is challenging due to frequently observed low parasite density infections, while their clinical relevance during early infancy is not well characterized. In Nanoro health district (Burkina Faso), we determined the prevalence of congenital malaria by real-time quantitative PCR and we assessed the performance of rapid diagnosis test (RDT) and light microscopy (LM) to detect Plasmodium falciparum infections in cord-blood samples. In addition, we examined the usefulness of P. falciparum Histidine Rich Protein2 (PfHRP2) as surrogate biomarker of infection and explored association between congenital malaria and clinical outcomes. A prevalence of congenital malaria by qPCR of 4% (16/400) was found, which increased to 10% among newborns from mothers infected at delivery. RDT and LM showed poor performances indicating limited utility for congenital malaria screening in cord blood. Because PfHRP2 detection in cord blood could be affected by transplacental passage of parasite antigens, PfHRP2 might not be used as a surrogate biomarker of congenital malaria infections. There was no evidence of a significant clinical impact of congenital malaria on infant's health from birth to 59 days of life. Case control studies including long-term follow up may provide additional understanding on the relevance of neonatal malaria infections.


Assuntos
Antígenos de Protozoários/genética , Transmissão Vertical de Doenças Infecciosas , Malária/sangue , Técnicas de Diagnóstico Molecular/métodos , Proteínas de Protozoários/genética , Adulto , Feminino , Sangue Fetal/parasitologia , Humanos , Lactente , Recém-Nascido , Malária/congênito , Malária/transmissão , Masculino , Técnicas de Diagnóstico Molecular/normas , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...